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Abstract

This paper reports a study of the linear stability of an annular liquid sheet evolving in a gaseous environment at rest. In this

investigation, the viscosity of the liquid is taken into account. As has been found in similar approaches developed for other liquid

systems, the results reveal the presence of a dominant wave and a cut-o� wave number for each set of initial conditions. A complete

parametric study is conducted. This shows a very speci®c in¯uence of the surface tension due to the presence of the natural curvature

of the liquid system. It also shows that the in¯uence of the liquid viscosity is stabilising, and that the importance of the action of

these forces is a function of the other parameters. A non-dimensional number D is derived from this study. This number, consistent

with that derived for ¯at liquid systems in a previous investigation, allows one to account for the in¯uence of the liquid viscosity on

the linear stability of an annular liquid sheet. Ó 1999 Elsevier Science Inc. All rights reserved.

1. Introduction

Theoretical investigations on liquid atomisation and spray
formation are very much required in order to help in the im-
provement of injection systems on the basis of theoretical
considerations rather than on time consuming and expensive
experimental tests. The development of theoretical approaches
dedicated to spray formation is complicated by the fact that
the physics of atomisation is only partially known at present.
Basic models are therefore still appreciated as they are re-
garded as a ®rst step to the development of more complete
theoretical approaches. Furthermore, they can provide some
indications on the main parameters that in¯uence the process
in a given situation as well as the nature of this in¯uence.
Although in many cases this information is qualitative, it can
help in de®ning a strategy for improving a given injection
system.

The linear theory is probably the best-known basic ap-
proach. It has been developed for many di�erent liquid systems
such as plain cylindrical jets (Rayleigh, 1879, Weber, 1931,
Sterling and Sleicher, 1975) and liquid sheets whether ¯at
(Squire, 1953, Chigier and Dumouchel, 1996, Cousin and
Dumouchel, 1996), radial (Weihs, 1978) or annular (Crapper
et al., 1975, Lee and Chen, 1991, Dumouchel and Ledoux,
1991). The linear theory shows multiple advantages. It is based
on quite simple considerations, and the mathematical re-
quirements are not too severe. Furthermore, in many situa-
tions, it has been found that the linear theory allows one to
determine an instability criterion (Rayleigh, 1879, Squire,
1953) and to calculate a characteristic length scale of the at-
omisation process studied. When a scheme of disintegration is
de®ned, this characteristic length scale leads to the determi-
nation of a theoretical drop diameter. In some situations, this
calculated diameter is satisfactorily representative of the drop-
size distribution (Dumouchel et al., 1990). In any event, it

www.elsevier.com/locate/ijh�
International Journal of Heat and Fluid Flow 20 (1999) 499±506

Notation

a internal radius of the annular liquid sheet
h liquid sheet thickness
k wave-number
kc cutt-o� wave-number
kopt dominant wave wave-number
p pressure
r radial position
Re Reynolds number (� qLUh/l)
t time
U relative velocity
(u, v) perturbation velocity component
x axial position
/ perturbation potential function
w liquid stream function
g� interface displacement function
g�0 amplitude of the perturbation
l dynamic liquid viscosity
m kinematic liquid viscosity
h azimuthal angle
qG, qL gas and liquid density
r surface tension
x complex frequency (�xr + ixi)
xi growth rate
ximax dominant wave growth rate

Subscript
i interface
j phase ¯ow
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always shows dependence on the main parameters in agree-
ment with the experimentally observed trends.

In the present study, the linear theory is applied on an
annular liquid sheet evolving in a gaseous environment at rest.
The formation of sprays through the disintegration of such a
liquid system corresponds to several industrial applications.
Furthermore, the study of the annular liquid sheet can be re-
garded as being the ®rst step towards the more complex
problem of a conical liquid system (Dumouchel et al., 1990).
The main purpose is here to investigate the in¯uence of the
liquid viscosity to see in which conditions this physical prop-
erty in¯uences the atomisation process. The approach devel-
oped can be regarded as an extension of the study on the ¯at
viscous liquid sheet reported in a previous paper (Cousin and
Dumouchel, 1996).

2. Mathematical considerations

The linear theory is developed for an annular liquid sheet
de®ned by a thickness h and an inner radius a as shown in
Fig. 1. For convenience the problem is set in a cylindrical co-
ordinate system (x, r, h) moving with the liquid. The following
assumptions are made: both ¯uids are assumed incompress-
ible, the viscosity of the gas is not taken into account, and the
thickness of the liquid sheet is assumed to be constant.
Moreover, in order to suppress the non-linear terms in the
equations, the amplitude of the perturbation is assumed to be
very small compared to its wavelength k and to the sheet
thickness h. Both interfaces are perturbed by a sinusoidal
disturbance de®ned by a wave number k. This disturbance
induces a displacement of the outer and the inner interfaces
that is introduced by the function gi de®ned by:

gi � g0i exp i kx�� ÿ xt��; �1�
where i (� 1, 2) refers to the outer and inner interface re-
spectively (Fig. 1). The initial ¯ow is steady and the presence of
the perturbation induces a non-steady ¯ow in both ¯uids. The
pressure and the velocity are written as the sum of a mean and
a disturbed part corresponding to the steady and unsteady
¯ows respectively. The purpose of the calculation is to deter-
mine the frequency x for any sinusoidal perturbation de®ned
by a wave number k. The frequency x may be complex. Ac-
cording to Eq. (1), a complex solution with a positive imagi-
nary part xi, indicates that the imposed perturbation will grow
and xi represents the growth rate of this perturbation.

Following the classical linear theory development and ac-
cording to the assumptions the disturbed part of the velocity in
each ¯uid is associated to a potential function /. As the liquid
viscosity is taken into account, the potential function in this
¯uid is completed by a stream function w. Thus, the disturbed
velocities are given by:

vj
! � grad

!
/j j � 1; 2 �2�

for the gas perturbation ¯ows, and by:

v0

! � grad
!

/0 � rot
!
~A; �3�

where ~A � 0; 0;w=r� � for the liquid ¯ow. The ¯uid dynamic
equations are written in both ¯uids. In the liquid as well as in
the outer and inner gas, the continuity equation with Eqs. (2)
and (3) yields:

D/j � 0 j � 0; 1; 2: �4�
These three equations allow one to ®nd the mathematical form
for the potential functions. The form is:

/j � BjI0�kr�� � CjK0�kr��exp �i�kxÿ xt�� j � 0; 1; 2; �5�
where Bj and Cj are unknowns to be determined and I0 and K0

are modi®ed Bessel functions classically encountered in axi-
symmetric problems. Using Eq. (3), the momentum equation
in the liquid takes the following form:

grad
! d/0

dt

�
� p0

qL

�
� rot

!
mD~A

 
ÿ d~A

dt

!
: �6�

By applying the curl, Eq. (6) reduces to an equation from
which the stream function is determined, namely

w � r DI1�k1r�� � EK1�k1r��exp �i�kxÿ xt��; �7�
where k2

1 � k2 ÿ ix=m, D and E are two other unknowns to be
calculated, and I1 and K1 are modi®ed Bessel functions. At this
stage, for a given perturbation wave number k, the calculation
of the frequency x requires the determination of 10 unknowns,
namely, B0, C0, B1, C1, B2, C2, D, E, g01 and g02. To achieve
this, conditions are written on each interface. First, the kine-
matic conditions express the fact that the interfaces always
comprise the same ¯uid particles:

vi � ogi

dt
� U

ogi

ox
;

v0 � ogi

ot
i � 1; 2:

�8�

The system of Eq. (8) is completed by the dynamic conditions
expressing the continuity of the stress tensor components
across each interface. Two equations are then written at each
interface:

ou0

or
� ov0

ox
� 0;

ÿ p0 � 2l
ov0

or
� ÿpi � pri i � 1; 2;

�9�

where the contribution of the surface tension is given by

pri � r
gi

r2

�
� o2gi

ox2

�
i � 1; 2: �10�

The eight unknowns contained in the three potential functions
and in the liquid stream function can be calculated using the
four Eqs. (8), the conservation of the tangential component of
the stress tensor through each interface (the ®rst equation of
system (9)), and the boundary conditions when r ® 0 and r ®
1. The problem reduces then to a system of two equationsFig. 1. Description of the annular liquid sheet.
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with two unknowns. The two equations express the conser-
vation of the normal component of the stress tensor through
each interface (the second equation of system (9)) and the two
unknowns are the initial amplitude of the perturbation on each
interface. This system is given by

2ÿ X� �2
Qab

1
h
ÿ �g0nbPba

i
� 2X�g0 � 4�g0nb

P1ba

Q1ab

������������
1ÿ X
p

� �q �g0nb
�Kb X2

 
ÿ 2iX

Reb

nb
ÿ Reb

nb

� �2
!

ÿ 4

Q1ab
ÿ �g0q

Re2
b

Web

1

n2
b

 
ÿ 1

!
� 0;

2ÿ X� �2
Qab

Pabna

h
ÿ �g0

i
� 2Xÿ 4na

P1ab

Q1ab

������������
1ÿ X
p

ÿ �qna
�Ia X2

 
ÿ 2iX

Rea

na
ÿ Rea

na

� �2
!

� 4

Q1ab
�g0 � q

Re2
a

Wea

1

n2
a

 
ÿ 1

!
� 0; �11�

where

b � a� h; nr � kr; n1r � k1r;

�g0 �
g01

g02

; �q � qG

qL

; X � ix
k2

qL

l
;

Rer � qLUr
l

; Wer � qG U 2r
r

; �Ia � I0�ka�
I1�ka� ;

�Kb � K0�kb�
K1�kb� ;

Pr1 ;r2
� P �nr1

; nr2
� � I0�kr1�K1�kr2� � K0�kr1�I1�kr2�;

Qr1 ;r2
� Q�nr1

; nr2
� � I1�kr1�K1�kr2� ÿ K1�kr1�I1�kr2�;

P1r1 ;r2
� P �n1r1

; n1r2
�; Q1r1 ;r2

� Q�n1r1
; n1r2
�:

The last mathematical manipulation consists of eliminating the
ratio of the initial amplitudes of the perturbation between the
two equations of system (11) to end up with the following
single equation:

d4�k�X4 � d3�k�X3 � d2�k;X�X2 � d1�k;X�X� d0�k;X��0;

�12�
where the coe�cients di are given in the appendix. This
equation, identical to the one developed by Lee and Chen
(1991), is the key equation of the problem. It is called the
dispersion equation and allows one to calculate the frequency
x of any initial perturbation de®ned by its wave number k. The
resolution of the dispersion equation is not straightforward
since the unknown variable and the coe�cients are complex.
Furthermore, it contains Bessel functions whose arguments are
functions of the unknown variable. Therefore, the dispersion
equation has to be solved numerically. This was achieved here
by using a Newton±Raphson method for non-linear systems.
Eq. (12) is decomposed following its real and imaginary parts
leading to a system of two equations. Using a ®rst-order
Taylor series development for each equation, the system is
reduced to a pair of linear equations. An iterative procedure is
then used to ®nd the solutions that satisfy both equations at
the same time.

Considering the asymptotic case of long wave perturbations
(k ® 0) applied for a non viscous liquid (l� 0), it can be
shown that Eq. (12) reduces to

x4ÿ2kUx3 � k2U 2 1

�
� b

a
1

Wea

�
x2 ÿ 4rUk3

aqL

x

� U 2rk4

aqL

2

�
� 1

Wea

�
� 0; �13�

where

a � 4b3

b2 ÿ a2
; b � 2 b3 � a3 � aq b2 ÿ a2� �� �

b2 ÿ a2
:

The resolution of Eq. (13) does not require any numerical
development and the solutions of this fourth order equation
with real and constant coe�cients can be obtained from a
commercial mathematical software.

3. Results

The results are presented in a graph xi� f(k) called the
dispersion diagram. As for the case of ¯at liquid sheets, the
dispersion equation is of order 4, leading to two possible
growth rates for a single perturbation. As shown by Hagerty
and Shea (1955) for the case of ¯at liquid sheets, these two
solutions correspond to the symmetric and antisymmetric
modes of perturbation, which di�er from the phase di�erence
between the two interfaces. For the antisymmetric mode, this
phase di�erence is zero, whereas for the other mode it is equal
to p. These two modes can be di�erentiated by their respective
growth rate, the growth rate of the antisymmetric mode being
always higher than that of the symmetric mode. Furthermore,
Rangel and Sirignano (1991) showed that the dominance of the
antisymmetric mode is always ensured provided that the gas/
liquid density ratio is less than 1, which is the case of interest in
the present investigation.

Examples of dispersion diagrams are presented in Fig. 2(a)
and (b) for the symmetric and the antisymmetric modes of
perturbation respectively, and for di�erent relative velocities
U. These results were obtained for an annular sheet of water
developing in air. The internal radius and the thickness of the
sheet were equal to 1 and 0.5 mm, respectively and the vis-
cosity of the liquid was not taken into account.

In order to validate the numerical resolution technique used
to solve Eq. (12), the results for the long wave asymptotic case
(k ® 0) presented in Fig. 2(a) and (b) are compared with the
solutions provided by Eq. (13), this latter equation being
solved with the software Matlab (version 5.1). The results are
presented in Fig. 2(c) and (d) for the symmetric and antisym-
metric modes of perturbation respectively. One can observe in
these two ®gures that, for both modes of perturbation, Eqs.
(12) and (13) give solutions that show identical slopes at the
origin of the dispersion diagram. This result shows the reliable
behaviour of the numerical technique used to solve Eq. (12).

The dispersion diagrams presented in Fig. 2(a) and (b) show
the expected bell shape, commonly encountered in linear the-
ory analysis. In each situation, a ®nite range of unstable per-
turbations, i.e. showing a positive growth rate, is obtained.
The maximum wave number of the unstable waves is called the
cut-o� wave number kc. The existence of the cut-o� wave
number has been explained on many di�erent occasions
(Squire, 1953, Crapper et al., 1975, Dumouchel and Ledoux,
1991) and results from the stabilising e�ect of the surface
tension forces that increases with the wave number of the
imposed perturbation. Another important characteristic of the
dispersion diagrams shown in Fig. 2(a) and (b) is the presence
of a maximum in any case and whatever the mode of pertur-
bation. This maximum, usually called the dominant wave, is
characterised by its wave number kopt and its growth rate ximax.
The dominant wave is always considered with a great interest
as it is usually assumed that, as this perturbation grows more
rapidly than any other, the whole disintegration process is
mainly controlled by this perturbation. Therefore, the wave
length of the dominant wave is often considered as a charac-
teristic length scale of the atomisation process studied. One can
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notice in Fig. 2(a) and (b) that both characteristics of the
dominant waves are higher for the antisymmetric mode than
for the symmetric mode. Therefore, the growth of an anti-
symmetric perturbation is likely to be the dominant process. It
was decided therefore to concentrate on this mode only within
the scope of this work.

Fig. 2(a) and (b) also report the in¯uence of the relative
velocity U. As expected, it can be seen that kc, kopt and ximax

increase as the relative velocity increases. A similar result can
be observed when the gas density is increased as it is presented
in Fig. 3. This behaviour shows the well-known destabilising
e�ect of the aerodynamic forces that are proportional to qGU2.
An increase of these forces leads to an increase of both dom-
inant wave characteristics i.e., it induces a faster disintegration
process and the production of smaller drops. The in¯uence
reported here is similar to that obtained for a ¯at liquid sheet
(Cousin and Dumouchel, 1996) and has been experimentally
observed in many situations. Indeed, it is known that an in-
crease of the liquid injection pressure leads to the production
of smaller drops. This shows to which extent the study carried
out here can provide physical information on the phenomenon
investigated.

Fig. 3. Dispersion diagram of the antisymmetric mode of perturba-

tion. In¯uence of the gas density (a� 1 mm, h� 0.5 mm, r� 0.073 kg

sÿ2, qL� 1000 kg/m3, U� 5 m/s).

Fig. 2. (a) Dispersion diagram of the symmetric mode of perturbation. (b) Dispersion diagram of the antisymmetric mode of perturbation. (c)

Dispersion diagrams for the long wave asymptotic case of the symmetric mode of perturbation. Comparison between Eqs. (12) and (13). (d) Dis-

persion diagrams for the long wave asymptotic case of the antisymmetric mode of perturbation. Comparison between Eqs. (12) and (13). (a� 1 mm,

h� 0.5 mm, r� 0.073 kg sÿ2, qG/qL� 1.23 ´ 10ÿ3.)
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3.1. In¯uence of the surface tension

The in¯uence of the surface tension forces on the linear
stability of an annular liquid sheet is more complicated than
for other liquid systems. As illustrated in Figs. 4 and 5, the
in¯uence of the surface tension is a function of the geometry of
the annular sheet and, more speci®cally, of the internal radius
of the sheet. Fig. 4 presents the in¯uence of the surface tension
on the dispersion diagram of an annular liquid sheet whose
internal radius is equal to 10 mm. It can be seen that when the
surface tension is increased, both dominant wave characteris-
tics as well as the cut-o� wave number decrease. This implies
that the disintegration process is getting slower and slower as
the surface tension increases and that the diameter of the drops
produced increases. This behaviour shows the well-known
stabilising e�ect of the surface tension forces that try to an-
nihilate the perturbation by forcing the interfaces to go back to
their initial position. The annular liquid sheet whose behaviour
is reported in Fig. 4 behaves as a ¯at liquid sheet.

However, when the internal radius of the annular sheet is
reduced, the in¯uence of the surface tension is di�erent. This is
illustrated in Fig. 5, which shows the in¯uence of the surface
tension on the dispersion diagram of the annular liquid sheet
whose internal radius has been reduced to 1 mm, the other
parameters being kept constant. It can be observed in this
®gure that the in¯uence of the surface tension is fundamentally
di�erent: as r increases, kopt and kc decreases as in the ®rst
case, but the growth rate of the dominant wave increases. This
behaviour can be explained as follows.

Surface tension forces take place when a liquid/gas interface
shows a curvature di�erent than zero. For a ¯at liquid sheet,
the curvature of the interfaces results from the presence of the
perturbation only. For an annular liquid sheet, the curvature
of the interfaces is imposed by the perturbation but also by the
natural curvature of the system due to the internal radius. The
forces resulting from the presence of the perturbation are
stabilising. However, the component related to the internal
radius is destabilising and induces an increase of the growth
rate when r increases. This behaviour is identical to the one
described by Rayleigh for the case of a low speed cylindrical
liquid jet. The double e�ect of the surface tension can be
identi®ed in the expression of pri (Eq. (10)) that contains two
terms. The ®rst one (g/r2) is the destabilising component of the
surface tension forces. For high internal radii, this term is very
small and the pressure pri reduces to the stabilising term and
becomes equal to the contribution of the surface tension in the
case of a ¯at sheet. Therefore, in this condition, the annular
liquid sheet behaves as a ¯at liquid system. As found in a
previous investigation (Dumouchel and Ledoux, 1991), the
condition for an annular liquid sheet to behave as a ¯at system
is related to the Weber number Wea de®ned by:

Wea � qGU 2a
r

: �14�
When this number is higher than 10, the surface tension forces
introduced by the curvature of the liquid sheet are negligible
and the sheet behaves as a ¯at liquid system.

Finally, it can be noticed in Fig. 5 that when the surface
tension increases, the wave number of the dominant wave
decreases towards an asymptotic value, i.e., kopt becomes in-
dependent of the surface tension. Such behaviour is identical to
the one reported by Rayleigh (1879) for the case of cylindrical
interfaces destabilised by the action of the surface tension only.
For the case reported in Fig. 5, when the surface tension in-
creases, the action of the aerodynamic forces decreases and for
the high values of r, the perturbation growth is likely to be a
consequence of the surface tension forces only. Thus, as for the
case investigated by Rayleigh, this leads to a constant opti-
mum wave number. This observation shows the good behav-
iour of the results obtained here and validates also the
resolution technique applied on Eq. (12).

Thus, the behaviour of an annular liquid system can be
reduced to a simpler system when the internal radius varies. A
similar behaviour is found when the thickness of the liquid is
varied. When h increases, the two interfaces become indepen-
dent and the two solutions of Eq. (12) correspond to the so-
lutions of two cylindrical interfaces identical to the one that
would be obtained by Weber theory. When h is further in-
creased, the external interface eventually reaches the behaviour
of a single ¯at interface. When this is coupled with a high in-
ternal radius a, the annular liquid sheet behaves as two inde-
pendent ¯at interfaces and the two solutions are identical. The
in¯uence of h on the behaviour of the annular liquid sheet can
be related to the Weber number Weh de®ned by:

Weh � qGU 2h
r

: �15�

Fig. 4. E�ect of the surface tension on the dispersion diagram of the

antisymmetric mode of perturbation (a� 10 mm, h� 1 mm, U� 5 m/s,

qG/qL� 1.23 ´ 10ÿ3).

Fig. 5. E�ect of the surface tension on the dispersion diagram of the

antisymmetric mode of perturbation (a� 1 mm, h� 1 mm, U� 5 m/s,

qG/qL� 1.23 ´ 10ÿ3).
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Fig. 6 presents all the asymptotic con®gurations that can be
reached by a non-viscous annular liquid sheet according to the
values of Weh and Wea. It is interesting to notice here that the
case of a non-viscous annular liquid sheet can be regarded as a
very general case from which any classical non-viscous liquid
system can be investigated. The classi®cation presented in Fig.
6 may be useful to evaluate the possible in¯uence of the geo-
metrical characteristics h and a on the atomisation process of
an annular liquid sheet.

3.2. In¯uence of the liquid viscosity

The in¯uence of the liquid viscosity on the dispersion dia-
gram of an annular liquid sheet is presented in Fig. 7. These
results were obtained for a sheet with an internal radius of 1
mm, a thickness of 500 lm and having a relative velocity with
the external medium of 5 m/s. It can be seen in Fig. 7 that when
the viscosity increases, both characteristics of the dominant
wave decrease. Therefore, the in¯uence of the liquid viscosity is
to slow down the disintegration process and to increase the size
of the drops. This behaviour is identical to that found for a ¯at

liquid sheet (Cousin and Dumouchel, 1996). It illustrates the
stabilising in¯uence of the liquid viscosity observed in many
experimental investigations. It is interesting to note in the same
®gure that the liquid viscosity does not a�ect the cut-o� wave
number kc as for a ¯at liquid sheet. As illustrated in Fig. 8,
which presents the individual contribution of the physical
phenomenon on the dispersion diagram, the cut-o� wave
number is a function of the surface tension forces only. Indeed,
when viscosity and surface tension are not taken into account,
the dispersion diagram shows no cut-o� wave number as the
aerodynamic forces can ensure the growth of any sinusoidal
perturbation. When the viscosity forces are added, it can be
seen that beyond a particular wave number, the growth rate
reduces and reaches a constant value as the wave number of
the perturbation increases. In this situation also, the dispersion
diagram shows no cut-o� wave number. A cut-o� wave num-
ber is obtained only when the surface tension is taken into
account, and, as already observed in Fig. 7, the cut-o� wave
number is not a�ected by the viscosity of the liquid.

It appears from this investigation that the liquid viscosity
may have an important in¯uence on the linear instability of
annular liquid sheets. However, this in¯uence is not only a
matter of the value of the viscosity but depends also on the
other parameters of the system. An example of this is given in
Fig. 9, which shows four dispersion diagrams obtained for
identical annular liquid sheets except for the values of the
viscosity and the velocity. It is interesting to note that the in-
¯uence of the viscosity is much more important for high rel-
ative velocities. It is believed that this behaviour is due to the
fact that an increase of the velocity U induces an increase of
the perturbation velocity gradients in the liquid i.e. an increase
of the viscous forces. Therefore, it was decided to conduct a
detailed parametric study in order to discover under which
conditions the liquid viscosity has a negligible in¯uence on the
linear stability of an annular liquid sheet. This parametric
study led us to consider the non-dimensional number D de-
®ned by

D �Weh

Re
Weh

�
� h

a

�
: �16�

Figs. 10(a) and (b) present the growth rate and wave number
of the dominant wave respectively as a function of D. In both
®gures, the dominant wave characteristics are divided by the

Fig. 6. Asymptotic behaviour and evolution of the two solutions of an

annular liquid sheet.

Fig. 7. E�ect of the liquid viscosity on the dispersion diagram of the

antisymmetric mode of perturbation (a� 1 mm, h� 0.5 mm, U� 5 m/

s, r� 7.3 ´ 10ÿ2 kg sÿ2, qG/qL� 1.23 ´ 10ÿ3).

Fig. 8. Contribution of each physical phenomenon on the dispersion

diagram of the antisymmetric mode of perturbation (a� 10 mm, h� 1

mm, U� 7 m/s, qG/qL� 1.23 ´ 10ÿ3).
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values corresponding to the non viscous case. Figs. 10(a) and
(b) divide up into two parts. For low D�<10ÿ4), the relative
dominant wave characteristics remain constant and equal to 1.
These values of the parameter D correspond therefore to liquid
systems whose stability is not in¯uenced, to ®rst order, by the
possible e�ect of the liquid viscosity.

For D�>10ÿ4), both relative growth rate and wave number
of the dominant wave show values ranging from 0 to 1, re-
vealing, as observed earlier, a possible decrease of these char-
acteristics because of the liquid viscosity. The parameter D
appears as an interesting non-dimensional characteristic of the
physics involved in the stability of annular liquid sheets.
Furthermore, the parameter D is consistent with the parameter
M reported by Cousin and Dumouchel (1996) for the case of a
¯at sheet. As observed in Fig. 6, an annular liquid sheet adopts
the behaviour of a ¯at liquid sheet when the internal radius is
increased. Eq. (16) shows that for a high internal radius, the
parameter D reduces to the parameter M.

4. Conclusion

The work reported in this paper can be regarded as an
extension of the study carried out by Cousin and Dumouchel
(1996) on the ¯at liquid sheet, by considering the more general
case of annular liquid sheets. This implies the consideration of
an additional parameter, namely, the internal radius of the
sheet. By conducting a linear theory analysis, it has been found
that the internal radius introduced additional surface tension
forces that increases the growth rate of the perturbation. This
surface tension e�ect that is enhanced as the internal radius of
the sheet is reduced, is identical to that observed on a low
speed cylindrical jet subjected to the Rayleigh instability.
Furthermore, it can be noted from the results reported in the
paper that the e�ect of the surface tension due to the internal
radius is more pronounced for small wave number perturba-
tion i.e. for high wave length.

As far as the in¯uence of the viscosity is concerned, the
behaviour reported here is similar to that obtained by Cousin
and Dumouchel (1996) for a ¯at liquid system. The viscosity
has a clear stabilising e�ect, reducing the characteristics of the
dominant wave, and it has no e�ect on the cut-o� wave
number. It was found also that the in¯uence of the viscosity is
a function of the other parameters. A non-dimensional group
D, consistent with the one obtained by Cousin and Dumouchel
(1996), and containing all the physical parameters of the
problem, was deduced from a parametric study. This param-
eter allows one to account for the in¯uence of the viscosity on
the stability of an annular liquid sheet.

Finally, the annular liquid system represents an interesting
case since it can be regarded as a more general system from
which any con®guration, ranging from the cylindrical jet to the
®nite ¯at interface, can be studied.
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Appendix A

This appendix presents the expressions of the coe�cients of
the dispersion equation (Eq. (12)):

Fig. 10. (a) Relative maximum growth rate versus the number D; (b)

relative optimum wave number versus the number D.

Fig. 9. In¯uence of the relative velocity on the e�ect of the liquid

viscosity (a� 1 mm, h� 0.5 mm, r� 7.3 ´ 10ÿ2 kg sÿ2, qG/

qL� 1.23 ´ 10ÿ3).
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